If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2+3x+51=0
a = -7; b = 3; c = +51;
Δ = b2-4ac
Δ = 32-4·(-7)·51
Δ = 1437
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1437}}{2*-7}=\frac{-3-\sqrt{1437}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1437}}{2*-7}=\frac{-3+\sqrt{1437}}{-14} $
| x3=0.343 | | -4(2x-3)-(3x-31=2(4x+17) | | 5(4x+9)+12=-2(3-7x) | | 3(2x+1)-2(x+3)=2(3x+7) | | -6(x+5)=4(2x-5)+12 | | 3/4n+12=-3 | | 3−2x=15 | | 3/4n-12=-3 | | 3/4n-12=-12 | | 3x+6=5x+7 | | 2/5•(j+40)=-4 | | 25-2x=-10 | | 3−y=11 | | 30-185n=0 | | 7X=36+5x | | x-12+x=72 | | 30n/185=0 | | 2x/3+1=3x/4+3 | | 12-x+x=72 | | 30/185n=0 | | x-12+72=x | | -8+x=2x+4 | | x+120+x-120=520 | | 10(3-8x)=-12(2x+5) | | 120+x*x=520 | | 9y-8=4y-4 | | 169¹-x/3²=5+3*3 | | 5−y=12 | | x²+(132-5*8)=3*4³ | | 2/5(x-26)=-6 | | c/2=-26 | | (x+5)^2-81=0 |